
1
2467B–8051–12/01

Overview .. 1

Main Features .. 1

Software Installation and Setup .. 1
Windows Installation ... 1
Linux Installation ... 2

Getting Started.. 3

Selecting a device ... 4

Selecting a communication medium .. 4
RS232... 4
CAN .. 5

Device special bytes ... 5
General options .. 5
CAN options.. 5

Editing the buffer and setting options .. 6
The Edit Buffer window... 6
The Buffer options window ... 7
The Buffer Checksum... 8

Executing operations on the target device .. 8

Operations flow ... 9

The history and command window ... 9

Recording and replaying commands .. 9
Building the configuration file automatically.. 10
Loading and running the configuration file.. 10
Building a configuration file using a text editor ... 10
Serializing Parts.. 12
Configuration file example .. 13

Troubleshooting ... 14
Configuration Files.. 14
Global messages .. 14
CAN messages... 14
RS232 messages ... 15
CAN Interfaces ... 15

PEAK PCAN 15
VECTOR CANpari 16

2
2467B–8051–12/01

Rev. xxxxE–8051–02/02

1

Overview
This ATMEL’s ISP software allows to program all our
FLASH C51 parts. It runs under Windows 9x / Me, Win-
dows NT / 2000 / XP and Linux as well.

Communicating with the target device may be done
through a RS232 link, a CAN or an USB link, depending
on the communication media supported by the target
device.

This software is named FLIP, which stands for: FLexible
In-system Programmer.

Main Features
• Intel MCS-86 Hexadecimal Object, Code 88 file

format supported for data file loading and saving

• Optional address offset for loading

• Buffer control:

– data byte modification, address range fill-in,
goto a specified address, data byte sequence
search

• Target device control:

– Blank check, Program, Read, Verify, Erase,
Special bytes edition capability

• Permanently displayed and updated information
about the buffer options and the target device status

• Customizable flow for quick repeating programming

• Command window allowing control through a
command file (Tcl language)

• Commands recording for automatic reconfiguration
and commands replay.

• Progress bar, tooltips and on-line help

Software Installation and Setup

Windows Installation
• Copy the Flip_<version>.zip file to an empty

temporary directory.

• Perform the zip file extraction so that it builds a
Flip_<version> directory.

• Open the Flip_<version> directory and run the Setup
file.

• Follow the installation program instructions.

For parallel port to CAN interfaces to work, you have to
install the proper drivers first.

FLIP User’s
Manual

2
xxxxE–8051–02/02

Linux Installation

Uncompress and untar the archive file.

The Linux version of FLIP supports ISP through the RS232 port and RS232 / CAN inter-
faces (nor USB, neither parallel port CAN interfaces are supported).

3
xxxxE–8051–02/02

Getting Started
This chapter guides you through a short tour of FLIP to help you getting started with this
ISP software.

Once the FLIP main window appears, you can see three areas from the left to the right:
the Operations Flow area, the Buffer Information area and the Device parameters one.

Just below these three frames stands a command and history window which use will be
discussed in Section “The history and command window”, page 9.

A message log window, a progress bar area and a communication information report
are available at the bottom of the main window.

1. Connect your target hardware to the host platform serial port, CAN port or USB
one.

– Connect your target hardware to a power supply and reset it. We assume
that the device to be programmed contains a FLIP compliant bootloader
program.

2. Select a device from the device list.

– From the top menu bar, select the Device item. In the Device pull-down
menu, click the Select item.The Device Selection dialog box pops up. Select
a device from the devices list box and click OK.
As soon as the device is selected, the Device parameters area is updated to
let you see the selected device special bytes. The Buffer information area is
updated as well with device dependent information.

3. Select a communication medium.

– From the top menu bar, select the Settings item. In the Settings pull-down
menu, click the Communication item. In the Communication cascading
menu, select a communication medium.
The medium setup dialog box pops up. Adjust the communication
parameters, and click Connect.
FLIP starts a synchronization sequence with the target device bootloader
software. After the synchronization sequence completion, FLIP reads the
target device special bytes and updates the main window frame on the right.

4. Select a HEX data file.

– From the top menu bar, select the File item. In the File pull-down menu, click
the Load item.
Select a HEX file from the file browser. FLIP parses the HEX file and fills in
the edition buffer.

5. Open the buffer edition window.

– From the top menu bar, select the Buffer item. In the Buffer pull-down menu,
click the Edit item.
The Edit Buffer window pops up. You may now perform many operations
onto the buffer contents.
For details about the possible buffer editing capabilities, see the
Section “Editing the buffer and setting options”, page 6.

6. Open the buffer options window.

– You may open the buffer options window from the FLIP main window, or from
the Edit Buffer dialog box.
From the main window menu bar, select the Buffer item. In the Buffer pull-
down menu, click the Options item.

4
xxxxE–8051–02/02

The Buffer Options dialog box pops up. The main buffer options are: the
buffer size, the initial contents, the address programming range and the
loading offset. For details about these options, see the Section “Editing the
buffer and setting options”, page 6.

7. Program the target device.

– From the top menu bar, select the Device item. In the Device pull-down
menu, click the Program item.

This concludes our short tour of the FLIP demo. For detailed descriptions of the possible
operations, please read the following chapters.

Selecting a device
From the top menu bar, select the Device item. In the Device pull-down menu, click the
Select item.The Device Selection dialog box pops up. Select a device from the devices
list box and click OK.
As soon as the device is selected, the Device parameters area is updated to let you see
the selected device special bytes. The Buffer information area is updated as well with
device dependent information.

The device selection may be done by pressing the F2 function key.

Each device supports a particular set of communication media.
You may use FLIP as an HEX file editor only; in that case, you do not have to select a
device from the device list.

Selecting a communication medium
From the top menu bar, select the Settings item. In the Settings pull-down menu, click
the Communication item. In the Communication cascading menu, select a communica-
tion medium. The medium setup dialog box pops up.

The communication medium selection may be done by pressing the F3 function key.

RS232

Adjust the communication parameters, and click Connect.
FLIP starts a synchronization sequence with the target device bootloader software. After
the synchronization sequence completion, FLIP reads the target device special bytes
and updates the Device parameters area.

Important note:

The RS232 synchronization sequence will probably pass, even at high baudrates. Nev-
ertheless, you must take care to the baudrate selection: if the target hardware oscillator
frequency is too low, the bootloader cannot achieve characters reception/transmission
and FLASH programming properly. In such cases, you have to decrease the baudrate.
FLIP will warn you through a message box if such a situation occurs. The following table
shows the valid Osc. freq./Baudrate pairs which allow a successful RS232 transmission.

Freq. / Baudrate 2400 4800 9600 19200 38400 57600 115200

11.0592 MHz 3 3 3 3 3 3

5
xxxxE–8051–02/02

CAN
• Select the proper CAN interface from the pulldown CAN menu. FLIP supports

several CAN interfaces: three of them must be connected to the PC parallel port,
one of them has been developed by ATMEL and must be connected to the PC
RS232 port; the last one is an USB to CAN interface.

– The Controller Area Network Setup dialog box shows up.

• Adjust the communication parameters port and baud rate.

• Click the Init button; this initializes the CAN hardware interface connected to the
PC.

• Check the node number and the CRIS parameters values; change them if
necessary. For the CRIS parameter to be taken into account, you must hit the
RETURN key after typing the new CRIS value; this updates the IDs values
displayed in the dialog box.

– Click the Node Connect button. FLIP reads the target device special bytes
and updates the Device parameters area.

Device special bytes

General options

The device special bytes are displayed in the main window Device parameters area.
Some of them are read-only.
You may read the special bytes at any time, if allowed by the security level, by clicking
the Read button.

Changing the special bytes values is straight forward: set a new value in the proper
entry field and click the Set button.
FLIP will write the special bytes new values and will read back the special bytes values
from the device. This guaranties that the displayed values are the device ones, not only
values to be programmed.

FLIP takes care about the current security level and disables the Read and the Set but-
tons when necessary.

CAN options

For devices supporting the CAN protocol, FLIP provides a CAN button at the bottom of
the Device parameters area.
Clicking the CAN button makes the CAN Node Configuration dialog visible. It lets you
read and modify a CAN node parameters.
The parameters that may be changed are :

• node number

12.0000 MHz 3 3 3 3 3

14.7456 MHz 3 3 3 3 3 3 3

16.0000 MHz 3 3 3 3 3

22.1184 MHz 3 3 3 3 3 3 3

24.0000 MHz 3 3 3 3 3 3

Freq. / Baudrate 2400 4800 9600 19200 38400 57600 115200

6
xxxxE–8051–02/02

• CRIS (CAN Relocatable Identifier Segment)

• BTC1 / BTC2 / BTC3 (Byte Timing Configuration)

To change a value, simply type the new value in the proper entry and click the Set
button.

After any CAN node configuration modification, you must reset the target device in order
to force the new configuration to be taken into account.

Editing the buffer and setting options
FLIP allows many operations on the buffer. This chapter describes each of them.

The Edit Buffer window

From the top menu bar, select the Buffer item. In the Buffer pull-down menu, click the
Edit item.
The entries are not case sensitive. Nor X, neither 0X prefix is necessary when you type
addresses or data values.

• File > Load ...

– Loads a HEX file into the buffer. Use the file browser to select a file.

• File > Save as ...

– Allows saving the buffer contents to a file.
The range of addresses which will be saved is recalled in the main window
Buffer Information area, with the Range label. You may modify the range
values through the Buffer Options dialog box. In the Address Programming
Range field, select the User Defined Address Range option and set the
Min and Max addresses, then click OK or Apply. The main window Buffer
Information area should reflect your changes.

• Edit > Modify ...

– Opens a dialog box which lets you modify the buffer contents. Type an
address and a data value in hexadecimal format.
After modification, the buffer window is scrolled and a yellow tag highlights
the modified address. You may perform buffer modifications by merely
double-clicking a data byte within the buffer window.

– Click the Apply button to perform changes without closing the Modify Buffer
dialog box. Click the OK button or hit the Return key to perform changes
and close the dialog box.

• Edit > Goto ...

– Opens a dialog box which lets you specify an address you want to scroll to.

• Edit > Fill ...

– Lets you enter a start address, an end address, and a value you want to be
used to fill the defined address range.
Click the Fill button to fill the address range. Use the Check button when
you want to check an address range contents.

• Edit > Reset ...

– Use this command to reset the buffer to the default blank value. The default
blank value is displayed in the main window Buffer Information area. You can
change it by using the Buffer Options window.

• Device > Read

7
xxxxE–8051–02/02

– Use this command to read the target device FLASH memory. The Edit Buffer
window is updated afterwards.

• Device > Program

– Use this command to program the target device FLASH memory.

– The device programming address range is displayed in the main window
Buffer Information area and is labeled Range. You can change it by using
the Buffer Options window.

• Device > Verify

– This command lets you compare the target device memory contents with the
buffer one. The comparison is done between (and including) boundary
addresses. The address range is displayed in the main window Buffer
Information. You can change it by using the Buffer Options window.

– FLIP displays the first fail address, if any.

• Options ...

– This command opens the Buffer Options dialog box.

The Buffer options window

From the top menu bar, select the Buffer item. In the Buffer pull-down menu, click the
Options item.
The entries are not case sensitive. Nor X, neither 0X prefix is necessary when you type
addresses or data values.

• Buffer Size

– After a device selection, this option is set to device dependent state by
default; this means that the buffer size is set to the target device memory
one (in Kbytes).
You may override this option setup and define a different buffer size value.

• Initial Buffer Contents

– After a device selection, this option is set to device dependent state by
default; this means that the buffer default reset value is set to the target
device memory blank value.
You may override this option setup and define a different buffer reset value.

• Reset Buffer Before Loading

– Set this option to yes only if you want the buffer to be reset to the blank value
before reading the HEX file.
The default No value is useful when you intend to load several HEX files into
the buffer.

• Address Programming Range

– This option lets you define the address range which will be used to program
the target device. It can be set to the following values:

• Address Range From Last Buffer Load

– This is the default setup. The address programming range is set to the
address range of the last HEX file loaded into the buffer.

• Whole Buffer

– The whole buffer address range will be used to program the target device.

• User Defined Address Range

– Select this option if you want to define a particular range of address to
program the target device.

8
xxxxE–8051–02/02

• Loading Address Offset

– This field lets you enter an offset value to be added to the HEX file
addresses before loading the buffer.

The Buffer Checksum

The buffer checksum value is displayed in the main window Buffer Information area.

The checksum is calculated on the address range displayed in the Buffer Information
area; the address boundaries are included in the address range. As described in the
above paragraph, the user has control over the address programming range.

The checksum value is updated each time the buffer is modified within the address pro-
gramming range by operations like: reset, modify, fill, HEX file loading and device
reading.

Executing operations on the target device
From the top menu bar, select the Device item. In the Device pull-down menu, select an
operation.

• Device > Select ...

– Use this command to select a device from a list.

• Device > Erase ...

– This command pops up a dialog box for you to enter the erasing options.
Some devices do not allow erasing per block; FLIP takes care about this by
making the corresponding selections impossible.

• Device > Blank Check ...

– This command lets you compare the target device contents to the blank
value. The current blank value is displayed in the Buffer Information area of
the main window. The verification is done between (and including) two
boundary addresses which you can adjust through the Blank Check dialog
box Start Address and End Address fields. Click the Check button to
perform the operation. The pass/fail status is displayed in the Blank Check
dialog box. If an error occurs the fail address is reported in the Blank Check
dialog box.
Use the dialog box Reset button to clear any previous check status
message.

• Device > Read ...

– This command lets you read the target device contents between two
boundary addresses. You can specify these boundaries through the dialog
box Start address and End address fields.

• Device > Program

– This command launches the target device programmation. The device
programming address range is displayed in the main window Buffer
Information area and is labeled Range. You can change it by using the
Buffer Options window.

• Device > Verify

– This command lets you compare the target device contents to the buffer one.
The verification is done on the address range displayed in the main window
Buffer Information area and is labeled Range. You can change it by using
the Buffer Options window.

9
xxxxE–8051–02/02

Operations flow
The operations flow is displayed on the left part of the FLIP main window. It lets you
select a number of operations to be performed sequentially. You launch the flow
sequence by clicking the Run button.
When an operation completes, the corresponding check box color changes from white
to green (for pass status) or red (for fail status).

If one of the operations fails, the operations flow stops.
Some operations in the flow require that you perform a setup, first :

• Erase - Setup the erase options through Device > Erase ...

• Blank Check - Setup the Blank Check options through Device > Blank Check ...

• Program - Setup the address programming range through Buffer > Options ...

• Verify - Setup the address verifying range through Buffer > Options ...

Use the Clear button to clear all checkboxes in the flow.

The history and command window
Starting with the FLIP version 1.2.0, the history and command window can be displayed
through the Settings > Command Window pulldown menu.

This window keeps the history of all actions performed on the target device or on HEX
files, but it can do much more than this! Type pwd at the prompt and you will get the cur-
rent FLIP working directory. Type expr 2 + 5 and you will get the result of this addition.
FLIP has been written in Tcl and C; everything you type in the command window is inter-
preted by a Tcl interpreter. Type anything stupid in the command window (no example is
provided here, you should be able to find your own) and you will get an invalid command
name "stupid" message.

The command window gives you access to the Tcl commands and you can rely on the
Tcl power to write flexible scripts which you can then execute in the command window.
Since some of the FLIP functions are made available to the Tcl command window, you
can call these functions in you Tcl script. An example of use of this capability follows.

Imagine that the Erase function which performs the target device erase operation is
called erase_f. This function returns 1 if erase passes and 0 if it fails. You want to per-
form the erase operation once, check if it passes or fails and execute it again if it has
failed. Your Tcl script would be something like :

if { [erase_f] != 1 } {

erase_f

}

Do not type this example in the command window because it cannot work. At the time
this document is written, this scripting capability is not fully implemented and cannot be
used to write production scripts, but it is used by the FLIP developpers for tests and soft-
ware validation purposes. Future versions of FLIP will make this capability available to
the end user and all the usable functions will be documented.

Recording and replaying commands
FLIP lets you build, load and execute a configuration file so that you can quickly config-
ure a large number of devices or repeat a given sequence onto the same device.

10
xxxxE–8051–02/02

You may build a configuration file by launching FLIP, executing commands and saving
these commands into a configuration file. You may also write this configuration file by
hand.

Because of the large number of supported CAN interfaces, FLIP cannot generate valid
configuration files for CAN interfaces. If you intend to automate ISP operations
through a CAN dongle, you will have to write the configuration file by hand. In order to
help you, some CAN configuration files are provided in the CAN subdirectory of the FLIP
software package. It is easy to write your own configuration file from these examples.

Building the configuration file automatically

Launch FLIP and perform the following operations :

• Select a device

• Set the communication parameters and connect to the target device

• Load a HEX file from disk

• Program the device

• Build the configuration file by executing the File > Save Configuration As... pulldown
menu command.

Even if you do not explicitely save a configuration file, it is built and saved anyway when
you exit FLIP. In that case, it will be named flip.cfg by default and will be written in the
directory in which the flip.exe file is located if you have write privileges to this directory.

Open the configuration file with a text editor to look at what FLIP has produced; you
should see something like :

selectDevice T89C51RC2

set port COM1

set baud 57600

initProtocol RS232Standard

connectRS232 Standard

parseHexFile "D:/Labo/dev/app/Flip_dev/bin/2kisp.hex"

setupProgramDevice

Loading and running the configuration file

Use the File > Load Configuration... pulldown menu command to load and execute a
configuration file.

You can then rerun the configuration file without loading it by simply pressing the F5
function key.

Building a configuration file using a text editor

The configuration file is mainly made of calls to Tcl procedures defined in FLIP. Tcl
being case sensitive, you must take care to the syntax.

• Selecting a device

– Syntax : selectDevice <device_name>

– Example : selectDevice T89C51RC2

• Selecting a communication port

– Syntax : set port <port_name>

– Example : set port COM1

11
xxxxE–8051–02/02

• Selecting a baudrate

– Syntax : set baud <baudrate>

– Example : set baud 57600

• Connecting to the device

– The connection is made of two steps: you first specify a protocol and then
connect to the device.

– Syntax :

– initProtocol <medium-protocol_name>

– connectRS232 <protocol_name>

– Example :

– initProtocol RS232Standard

– connectRS232 Standard

• Loading a HEX file

– Syntax : parseHexFile "<hex_file_pathname>"

– Example 1 : parseHexFile "D:/Labo/dev/app/Flip

Dev/bin/2kisp.hex"

– The double quotes may be omitted if the file pathname does not contain any
space.

– Example 2 : parseHexFile D:/Labo/dev/app/FlipDev/bin/2kisp.hex

• Erasing the device

– Some devices only support a full chip erase operation; some others support
full chip and per block erasing operations.

• Full chip erase :

– Syntax : setupFullEraseDevice

• Block erase :

– Syntax : setupEraseBlock<i>

– Example : setupEraseBlock0

– If you intend to erase several blocks, simply write several block erase lines
with different block numbers.

• Blank checking the device

– Checking that a device is blank requires that you enter three lines :

– Syntax :

– setupBlankCheckDevice

– set blankCheckAddr(start) <start_addr>

– set blankCheckAddr(end) <end_addr>

– Example :

– setupBlankCheckDevice

– set blankCheckAddr(start) 0000

– set blankCheckAddr(end) 7FFF

• Programming the device

– Syntax : setupProgramDevice

• Verifying the device

– Syntax : setupVerifyDevice

• Setting the Software Boot Vector value

12
xxxxE–8051–02/02

– Syntax : setupSBV <value>

– Example : setupSBV FC

• Setting the Boot Status Byte value

– Syntax : setupBSB <value>

– Example : setupBSB FE

• Setting the device security level

– Syntax : setupSecurityLevel <security_level>

– Example : setupSecurityLevel 1

• Programming the Oscillator fuse

– Syntax : setupOscFuse <value>

– Example : setupOscFuse 1

• Programming the BLJB fuse

– Syntax : setupBljbFuse <value>

– Example : setupBljbFuse 0

The BLJB bit is active low.

• Programming the X2 fuse

– Syntax : setupX2Fuse <value>

– Example : setupX2Fuse 1

The above commands do not actually perform the described operations, they only setup
them. In order to execute the described operations, you must select the File > Execute
Configuration File command or press the F5 key.

You may comment out a line of the configuration file by inserting a "#" character at the
beginning of the line.

Serializing Parts

You may want to register a serial number (64 bits max.) in your parts during the ISP pro-
cess. FLIP provides a mean to do this through the configuration file, but it cannot
produce the proper command automatically; you will have to add the serialization
command to your configuration file by hand.

– Syntax : setupSerialize <memory> <sn_init> <sn_width> <sn_step>
<sn_lsb_addr>

Parameters:

• <memory> = FLASH or EEPROM

• <sn_init> = Serial Number initial value in hexadecimal, without any leading X, 0x or
H prefix. sn_init must be composed of an even number of characters.

• <sn_width> = number of bytes necessary to handle the serial number (8 max.).

• <sn_step> = a positive or negative number to increment or decrement the serial
number.

• <sn_lsb_addr> = the less significant byte of the serial number in memory

The current serial number will be displayed in the Buffer Information frame of the main
window. In case of wrong argument given to the setupSerialize procedure, an error mes-
sage is displayed in the Buffer Information frame.

The EEPROM selection may not be possible; this depends on the microcontroller type.
An error message will be displayed

13
xxxxE–8051–02/02

Valid procedure calls:

• setupSerialize FLASH 00 8 1 7

• setupSerialize EEPROM DEADBEEF00000000 8 10 0x7FFF

• setupSerialize FLASH 090302FFFFFF 6 -1 255

Invalid procedure calls:

• setupSerialize FLAS 00 8 1 7 (the memory name is not correct)

• setupSerialize FLASH F00 8 1 7 (odd number of chars for the initial value; should be
0F00)

• setupSerialize FLASH 00 9 1 7 (the number of bytes reserved to store the serial
number is too large)

• setupSerialize FLASH 00 8 0 7 (the step value is zero)

• setupSerialize FLASH 00 8 1 6 (you cannot store a 8-byte serial number if the
address of its less significant byte is 6)

Configuration file example

Putting all this together, we can build a full configuration file :

--------------- Configuration file example -------------------

#

Device selection and communication setup

selectDevice T89C51RC2

set port COM1

set baud 57600

initProtocol RS232Standard

connectRS232 Standard

#

parseHexFile "D:/Labo/dev/app/Flip_dev/bin/2kisp.hex"

Erase 3 blocks

setupEraseBlock0

setupEraseBlock1

setupEraseBlock2

Blank checking requires 3 lines

setupBlankCheckDevice

set blankCheckAddr(start) 0010

set blankCheckAddr(end) 07FF

Program the device with the above loaded HEX file

setupProgramDevice

Verify proper device programming

setupVerifyDevice

Program the special bytes

setupSBV FB

setupBSB 81

setupOscFuse 1

setupBljbFuse 0

setupX2Fuse 1

setupSecurityLevel 1

setupSerialize FLASH 00 8 1 0x7FFF

14
xxxxE–8051–02/02

Troubleshooting

Configuration Files

The automatic generation of a configuration file done by FLIP is not fully functional for
CAN interfaces. Therefore, you must create CAN configuration files by hand.

Configuration files examples are provided in the /can directory of your FLIP installation
directory.

Global messages
• Time Out Error

– Check the communication medium connections and the target hardware
power supply.
If everything is allright, reset the target hardware and select a smaller baud
rate from the FLIP communication medium dialog box. For maximum
performance purpose, FLIP and its software companion (the bootloader) do
not perform any data flow control (no XON/XOFF). Therefore, at high baud
rates, it may happen that the bootloader has no time enough to perform data
management and does not answer properly to the FLIP commands or the
answer comes too late.

• Software Security Bit set. Cannot access device data.

– The major part of the target device is protected against writing operations
when the device is set to the security level 1 and protected against reading
operations when the device is set to the security level 2. The above
message means that the operation performed by FLIP is not legal.

CAN messages
• CAN interface error

– The PC parallel port to CAN hardware interface did not execute the FLIP
command properly.

–

• Unexpected CAN response data length

– The length of the CAN message sent by the bootloader is unexpected.

–

• The bootloader did not understand the FLIP command

– The CAN protocol stack specification mentions that while sending
programming frames to the device, the bootloader may answer with a data
byte of 0x00 if it got all data from FLIP, 0x02 if it expects more data from FLIP
and 0x01 if the bootloader failed to execute the write command.

–

• Got an error message ID from the bootloader but the CAN message data value
is not correct.

– The bootloader has detected an error condition and signals it by an error
message which is itself corrupted.

–

• Got an error message ID from the bootloader but the CAN message data
length is not correct.

15
xxxxE–8051–02/02

– The bootloader has detected an error condition and signals it by an error
message which length is not correct.

–

• The CAN message ID is not correct.

– The bootloader answer contains an incorrect identifier.

• Invalid bootloader answer on blank check

– During the device blank check operation, the bootloader has sent an
incorrect answer to FLIP.

RS232 messages
• The board reply is not correct

– Probably a framing error detected by the microcontroller UART.

–

• The RS232 port could not be opened

– The selected serial port does not exist or has not been closed properly. Quit
FLIP and start it again.

–

• Check sum error

– The bootloader has received from FLIP a frame which checksum is not
correct.

CAN Interfaces

Sometimes the CAN dongle fails to init. This is due to the fact that FLIP calls functions
from a DLL released by the manufacturer of the dongle. This DLL contains an Applica-
tion Programming Interface (API) for third party applications (like FLIP) to control the
CAN dongle properly. Most of the time, this DLL is not copied to your file system during
a regular CAN dongle software installation; the API DLL requires a specific installation
procedure described in the CAN dongle documentation.

The following paragraphs give specific information about some CAN dongles supported
by FLIP.

PEAK PCAN

The PCAN dongle from PEAK has no API included in it’s software package. PEAK pro-
vides this API separately. With the PEAK’s agreement, we provide you with the API
installation package named Pcandrv. It is located in the /can directory of the FLIP instal-
lation directory. A typical location is: C:\Program Files\ATMEL\FLIP 1.8.0\can.

Launch the Pcandrv application and once the API and the driver of the dongle are
installed, launch FLIP.

Important information is given by PEAK at http://www.peak-system.com. In the Down-
load > Documentation section, read "Tips PCAN-Dongle and Win2000/XP".

FLIP considers the LPT1 port address as being 0x378, IRQ number 7.

The interface between FLIP and the PEAK PCAN dongle is the CanApi2.dll file under
WINNT\system32.

16
xxxxE–8051–02/02

VECTOR CANpari

Windows 98 1. Install the Vector CAN Programming Library. This will copy the vcand32.dll file on
your file system.

2. Add the vcand32.dll file pathname to your PATH env. variable by modifying your
autoexec.bat file.

3. Install the CANpari hardware driver for Windows 98.

Windows 2000 1. Install the Vector CAN Programming Library. This will copy the vcand32.dll file on
your file system.

2. Add the vcand32.dll file pathname to your PATH env. variable.

3. Install the CANpari hardware driver for Windows 2000.

17
xxxxE–8051–02/02

	Overview
	Main Features
	Software Installation and Setup
	Windows Installation
	Linux Installation

	Getting Started
	Selecting a device
	Selecting a communication medium
	RS232
	CAN

	Device special bytes
	General options
	CAN options

	Editing the buffer and setting options
	The Edit Buffer window
	The Buffer options window
	The Buffer Checksum

	Executing operations on the target device
	Operations flow
	The history and command window
	Recording and replaying commands
	Building the configuration file automatically
	Loading and running the configuration file
	Building a configuration file using a text editor
	Serializing Parts
	Configuration file example

	Troubleshooting
	Configuration Files
	Global messages
	CAN messages
	RS232 messages
	CAN Interfaces
	PEAK PCAN
	VECTOR CANpari
	Windows 98
	Windows 2000

